Assault Ladders & the Open-Architecture Composite Structures Used to Improve Them

POSTED: DECEMBER 11, 2017 | BY: AUSTIN GURLEY, PH.D.ROSS WESSON

HOMELAND DEFENSE AND SECURITY INFORMATION ANALYSIS CENTER

Click for Full Article

Introduction

In the early morning of April 7, 1776, after fighting through the night, Capt. John Barry and his crew threw ladders over the deck of the HMS Edward and took command—the first capture of a British ship by the Continental Army [1]. Long before that day, and ever since, ladders have been a staple tool of naval and land assault. They also find a place in other critical environments, including tactical military and special operations, emergency and disaster response, police and SWAT operations, climbing, and diving. Over the last several decades, military and first responder communities have continued to improve and refine ladder design and weight for deployment and small unit operations. Here we review the state of the art in assault ladder materials and design and consider where future development efforts should be directed. Studies by Deft Dynamics LLC find that ladders fabricated from composite materials provide decreased weight at a cost of increased stowed volume. There is ample room for innovation in this space, to reduce both the collapsed size and weight of a composite ladder.

Assault ladder technologies fall into one of two categories: self-supporting (rigid) or caving/Jacob’s (wire, rope, or cable). Assault ladders typically collapse into short sections for easy carry and are used for entering buildings and bridging across natural or urban rifts. Caving ladders, often fabricated from steel or Kevlar cables, can be used in descent/ascent/extraction operations. Caving ladders remain the primary platform for extraction and emergency response and currently provide little room for new/novel developments. However, advances in different materials offer the defense and first responder communities potentially game-changing improvements in self-supporting ladder technology.

Leave a Comment